A Formal Proof of Sylow's Theorem An Experiment in Abstract Algebra with Isabelle HOL

نویسندگان

  • Florian Kamm
  • Lawrence C. Paulson
چکیده

The theorem of Sylow is proved in Isabelle HOL. We follow the proof by Wielandt that is more general than the original and uses a non-trivial combinatorial identity. The mathematical proof is explained in some detail leading on to the mechanization of group theory and the necessary combinatorics in Isabelle. We present the mechanization of the proof in detail giving reference to theorems contained in an appendix. Some weak points of the experiment with respect to a natural treatment of abstract algebraic reasoning give rise to a discussion of the use of module systems to represent abstract algebra in theorem provers. Drawing from that, we present tentative ideas for further research into a section concept for Isabelle. A Formal Proof of Sylow's Theorem i

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Proofs: Spider Diagrams Meet Higher-Order Provers

We present an interactive heterogeneous theorem proving framework, which performs formal reasoning by arbitrarily mixing diagrammatic and sentential proof steps. We use Isabelle to enable formal reasoning with either traditional sentences or spider diagrams. We provide a mechanisation of the theory of abstract spider diagrams and establish a formal link between diagrammatic concepts and the exi...

متن کامل

Algebras for Program Correctness in Isabelle/HOL

We present a reference formalisation of Kleene algebra and demonic refinement algebra with tests in Isabelle/HOL. It provides three different formalisations of tests. Our structured comprehensive libraries for these algebras extend an existing Kleene algebra library. It includes an algebraic account of Hoare logic for partial correctness and several refinement and concurrency control laws in a ...

متن کامل

A Formal Proof of Cauchy's Residue Theorem

We present a formalization of Cauchy’s residue theorem and two of its corollaries: the argument principle and Rouché’s theorem. These results have applications to verify algorithms in computer algebra and demonstrate Isabelle/HOL’s complex analysis library.

متن کامل

Modular Structures as Dependent Types in Isabelle

This paper describes a method of representing algebraic structures in the theorem prover Isabelle. We use Isabelle's higher order logic extended with set theoretic constructions. Dependent types, constructed as HOL sets, are used to represent modular structures by semantical embedding. The modules remain rst class citizen of the logic. Hence, they enable adequate formalization of abstract algeb...

متن کامل

Program Verification based on Kleene Algebra in Isabelle/HOL

Schematic Kleene algebra with tests (SKAT) supports the equational verification of flowchart scheme equivalence and captures simple while programs with assignment statements. We formalise SKAT in Isabelle/HOL, using the quotient type package to reason equationally in this algebra. We apply this formalisation to a complex flowchart transformation proof from the literature. We extend SKAT with as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998